
VOODOO’S INTRODUCTION TO JAVASCRIPT
© 1996, 1997 by Stefan Koch

Part 4: Windows and on-the-fly documents

Creating windows

Opening new browser windows is a great feature of JavaScript. You can either load a new do-
cument (for example a HTML-document) to the new window or you can create new documents
(on-the-fly). We will first have a look at how we can open a new window, load a HTML-page
to this window and then close it again. The following script opens a new browser window and
loads a meaningless page:

<html>
<head>
<script language="JavaScript">
<!-- hide

function openWin() {
 myWin= open("bla.htm");
}

// -->
</script>
</head>
<body>

<form>
<input type="button" value="Open new window" onClick="openWin()">
</form>

</body>
</html>

(The online version lets you test this script immediately)

The page bla.htm is loaded into the new window through the open() method.

You can control the appearance of the new window. For example you can decide if the window
shall have a statusbar, a toolbar or a menubar. Besides that you can specify the size of the win-
dow. The following script opens a new window which has got the size 400x300. The window
does not have a statusbar, toolbar or menubar.

<html>
<head>

<script language="JavaScript">
<!-- hide

function openWin2() {
 myWin= open("bla.htm", "displayWindow",
 "width=400,height=300,status=no,toolbar=no,menubar=no");
}

// -->
</script>
</head>
<body>

<form>
<input type="button" value="Open new window" onClick="openWin2()">
</form>

</body>
</html>

(The online version lets you test this script immediately)

You can see that we specify the properties in the string "width=400,height=300,status=no,tool-
bar=no,menubar=no". Please note that you must not use spaces inside this string!

Here is a list of the properties a window can have:

Some properties have been added with JavaScript 1.2 (i.e. Netscape Navigator 4.0). You cannot
use these properties in Netscape 2.x or 3.x or Microsoft Internet Explorer 3.x as these browsers
do not understand JavaScript 1.2. Here are the new properties:

directories yes|no
height number of pixels
location yes|no
menubar yes|no
resizable yes|no
scrollbars yes|no
status yes|no
toolbar yes|no
width number of pixels

alwaysLowered yes|no
alwaysRaised yes|no
dependent yes|no
hotkeys yes|no
innerWidth number of pixels (re-

places width)

You can find an explanation of these properties in the JavaScript 1.2 guide. I will have an ex-
planation and some examples in the future.
With the help of these properties you can now define at which position a window shall open.
You cannot do this with the older versions of JavaScript.

The name of a window

As you have seen we have used three arguments for opening a window:

 myWin= open("bla.htm", "displayWindow",
 "width=400,height=300,status=no,toolbar=no,menubar=no");

What is the second argument for? This is the name of the window. We have seen how to use the
target-property earlier. If you know the name of an existing window you can load a new page
to it with

Here you need the name of the window (if the window does not exist, a new window is created
through this code). Please note that myWin is not the name of the window. You can just access
the window through this variable. As this is a normal variable it is only valid inside the script in
which it is defined. The window name (here displayWindow) is a unique name which can be
used by all existing browser windows.

Closing windows

You can close windows through JavaScript. For this you need the close() method. Let’s open a
new window as shown before. In this window we load the following page:

<html>
<script language="JavaScript">
<!-- hide

function closeIt() {
 close();
}

// -->
</script>

innerHeight number of pixels (re-
places height)

outerWidth number of pixels
outerHeight number of pixels
screenX position in pixels
screenY position in pixels
titlebar yes|no
z-lock yes|no

<center>
<form>
<input type=button value="Close it" onClick="closeIt()">
</form>
</center>

</html>

(The online version lets you test this script immediately)

If you hit the button in the new window the window is being closed. open() and close() are me-
thods of the window-object. Normally we should think that we have to write window.open() and
window.close() instead of open() and close(). This is true - but the window-object is an excep-
tion here. You do not have to write window if you want to call a method of the window-object
(this is only true for this object).

Creating documents on-the-fly

We are coming now to a cool feature of JavaScript - creating documents on-the-fly. This means
you can let your JavaScript code create a new HTML-page. Furthermore you can create other
documents - like VRML-scenes etc.. You can output these documents in a separate window or
in a frame.
First we will create a simple HTML-document which will be displayed in a new window. Here
is the script we are going to have a look at now.

<html>
<head>
<script language="JavaScript">
<!-- hide

function openWin3() {
 myWin= open("", "displayWindow",
 "width=500,height=400,status=yes,toolbar=yes,menubar=yes");

 // open document for further output
 myWin.document.open();

 // create document
 myWin.document.write("<html><head><title>On-the-fly");
 myWin.document.write("</title></head><body>");
 myWin.document.write("<center>");
 myWin.document.write("This HTML-document has been created ");
 myWin.document.write("with the help of JavaScript!");
 myWin.document.write("</center>");
 myWin.document.write("</body></html>");

 // close the document - (not the window!)
 myWin.document.close();
}

// -->
</script>
</head>
<body>

<form>
<input type=button value="On-the-fly" onClick="openWin3()">
</form>

</body>
</html>

(The online version lets you test this script immediately)

Let’s have a look at the function winOpen3(). You can see that we open a new browser window
first. As you can see the first argument is an empty string "" - this means we do not specify an
URL. The browser should not just fetch an existing document - JavaScript shall create a new
document.
We define the variable myWin. With the help of this variable we can access the new window.
Please note that we cannot use the name of the window (displayWindow) for this task. After ope-
ning the window we have to open the document. This is done through:

 // open document for further output
 myWin.document.open();

We call the open() method of the document-object - this is a different method than the open()
method of the window-object! This command does not open a new window - it prepares the do-
cument for further output. We have to put myWin before the document.open() in order to access
the new window.
The following lines create the document with document.write():

 // create document
 myWin.document.write("<html><head><title>On-the-fly");
 myWin.document.write("</title></head><body>");
 myWin.document.write("<center>");
 myWin.document.write("This HTML-document has been created ");
 myWin.document.write("with the help of JavaScript!");
 myWin.document.write("</center>");
 myWin.document.write("</body></html>");

You can see that we write normal HTML-tags to the document. We create HTML-code! You
can write any HTML-tags here.
After the output we have to close the document again. The following code does this:

 // close the document - (not the window!)
 myWin.document.close();

As I told you before you can create documents on-the-fly and display them in a frame as well.
If you for example have got two frames with the names frame1 and frame2 and want create a
new document in frame2 you can write the following in frame1:

parent.frame2.document.open();

parent.frame2.document.write("Here goes your HTML-code");

parent.frame2.document.close();

Creating VRML-scenes on-the-fly

In order to demonstrate the flexibility of JavaScript we are now going to create a VRML-scene
on-the-fly. VRML stands for Vitual Reality Modelling Language. This is a language for crea-
ting 3D scenes. So get your 3D glasses and enjoy the ride... No, it’s just a simple example - a
blue cube. You will need a VRML plug-in in order to view this example. This script doesn’t
check if a VRML plug-in is available (this is no problem to implement).

(The online version lets you test this script immediately)

Here is the source code:

<html>
<head>
<script language="JavaScript">
<!-- hide

function vrmlScene() {
 vrml= open("", "displayWindow",
 "width=500,height=400,status=yes,toolbar=yes,menubar=yes");

 // open document for further output
 vrml.document.open("x-world/x-vrml");

 vr= vrml.document;

 // create VRML-scene
 vr.writeln("#VRML V1.0 ascii");

 // Light
 vr.write("Separator { DirectionalLight { ");
 vr.write("direction 3 -1 -2.5 } ");

 // Camera
 vr.write("PerspectiveCamera { position -8.6 2.1 5.6 ");
 vr.write("orientation -0.1352 -0.9831 -0.1233 1.1417 ");
 vr.write("focalDistance 10.84 } ");

 // Cube
 vr.write("Separator { Material { diffuseColor 0 0 1 } ");
 vr.write("Transform { translation -2.4 .2 1 rotation 0 0.5 1 .9 } ");
 vr.write("Cube {} } }");

 // close the document - (not the window!)

 vrml.document.close();
}

// -->
</script>
</head>
<body>

<form>
<input type=button value="VRML on-the-fly" onClick="vrmlScene()">
</form>

</body>
</html>

This source code is quite similar to the last example. First we open a new window. Then we have
to open the document in order to prepare it for the output. Look at this code:

 // open document for further output
 vrml.document.open("x-world/x-vrml");

In the last example we did not write anything into the brackets. What does the "x-world/x-vrml"
mean? It’s the MIME-type of the file we want to create. So here we tell the browser what kind
of data follows. If we do not write anything into the brackets the MIME-type is set to "text/html"
by default (this is the MIME-type of HTML-files).
(There are different ways for getting to know a certain MIME-type - the browser itself has a list
of the known MIME-types. You can find this list in the option or preference menu.)
We have to write vrml.document.write() for creating the 3D scene. This is quite long - therefore
we define vr=vrml.document. Now we can write vr.write() instead of vrml.document.write().
Now we can output normal VRML-code. I am not going to describe the elements of a VRML-
scene. There are several good VRML sources available on the Internet. The plain VRML-code
looks like this:

#VRML V1.0 ascii

Separator {

 DirectionalLight { direction 3 -1 -2.5 }

 PerspectiveCamera {
 position -8.6 2.1 5.6
 orientation -0.1352 -0.9831 -0.1233 1.1417
 focalDistance 10.84
 }

 Separator {
 Material {
 diffuseColor 0 0 1
 }
 Transform {
 translation -2.4 .2 1

 rotation 0 0.5 1 .9
 }
 Cube {}
 }
}

This is the code which we output through the document.write() commands.
Of course it is quite meaningless to create a scene on-the-fly which can also be loaded as a nor-
mal VRML-file.
It gets more interesting if you for example make a form where the user can enter different ob-
jects - like a spehre, cylinder, cone etc. - and JavaScript creates a scene from this data (I have
an example of this in my JS-book).

©1996,1997 by Stefan Koch
e-mail:skoch@rumms.uni-mannheim.de
http://rummelplatz.uni-mannheim.de/~skoch/
My JavaScript-book: http://www.dpunkt.de/javascript

